
INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course: B.TECH,

Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

UNIT-1

1.1 MICROPROCESSORS AND MICROCONTROLLERS

Microprocessor Microcontroller

Arithmetic and logic

unit

Accumulator

Working Registers

Program Counter Stack Pointer

Clock Circuit Interrupt circuit

ALU Timer/ IO Ports

Counter
Accumulator

Interrupt
Registers

Internal Circuits

Internal RAM ROM

Stack Pointer Clock

Program Counter

Block diagram of microprocessor Block diagram of microcontroller

Microprocessor contains ALU, General purpose

registers, stack pointer, program counter, clock

timing circuit, interrupt circuit

Microcontroller contains the circuitry of

microprocessor, and in addition it has built in ROM,

RAM, I/O Devices, Timers/Counters etc.

It has many instructions to move data between

memory and CPU

It has few instructions to move data between memory

and CPU

Few bit handling instruction It has many bit handling instructions

Less number of pins are multifunctional More number of pins are multifunctional

Single memory map for data and code

(program)

Separate memory map for data and code (program)

Access time for memory and IO are more Less access time for built in memory and IO.

Microprocessor based system requires

additional hardware

It requires less additional hardwares

More flexible in the design point of view Less flexible since the additional circuits which is

residing inside the microcontroller is fixed for a
particular microcontroller

Large number of instructions with flexible

addressing modes

Limited number of instructions with few

addressing modes

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course: B.TECH,

Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

1.2. RISC AND CISC CPU ARCHITECTURES

Microcontrollers with small instruction set are called reduced instruction set computer

(RISC) machines and those with complex instruction set are called complex instruction set

computer (CISC). Intel 8051 is an example of CISC machine whereas microchip PIC

18F87X is an example of RISC machine.

RISC CISC

Instruction takes one or two cycles Instruction takes multiple cycles

Only load/store instructions are used to access

memory

In additions to load and store instructions, memory

access is possible with other instructions also.

Instructions executed by hardware Instructions executed by the micro program

Fixed format instruction Variable format instructions

Few addressing modes Many addressing modes

Few instructions Complex instruction set

Most of the have multiple register banks Single register bank

Highly pipelined Less pipelined

Complexity is in the compiler Complexity in the microprogram

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course: B.TECH,

Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

1.2. HARVARD & VON- NEUMANN CPU ARCHITECTURE

Von-Neumann (Princeton architecture) Harvard architecture

Data

CPU

Address Bus

Program

Memory

Data

Memory

Data

CPU
Address Bus

Data

Address Bus

Data

Memory

Program

Memory

Von-Neumann (Princeton architecture) Harvard architecture

It uses single memory

instructions and data.

space for both It has separate program memory and data memory

It is not possible to fetch instruction code and data Instruction code and data

simultaneously

can be fetched

Execution of instruction takes more machine cycle Execution of instruction takes less machine cycle

Uses CISC architecture Uses RISC architecture

Instruction pre-fetching is a main feature Instruction parallelism is a main feature

Also known as control flow or control driven

computers

Also known as data flow

computers

or data driven

Simplifies the chip design because of single memory

space

Chip design is complex due to separate memory

space

Eg. 8085, 8086, MC6800 Eg. General purpose microcontrollers, special DSP

chips etc.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

COMPUTER SOFTWARE

A set of instructions written in a specific sequence for the computer to solve a

specific task is called a program and software is a collection of such programs.

The program stored in the computer memory in the form of binary numbers is called

machine instructions. The machine language program is called object code.

An assembly language is a mnemonic representation of machine language. Machine

language and assembly language are low level languages and are processor specific.

The assembly language program the programmer enters is called source code. The

source code (assembly language) is translated to object code (machine language)

using assembler.

Programs can be written in high level languages such as C, C++ etc. High level

language will be converted to machine language using compiler or interpreter.

Compiler reads the entire program and translate into the object code and then it is

executed by the processor. Interpreter takes one statement of the high level language

as input and translate it into object code and then executes.

Introduction to Embedded Systems

 An embedded s y s t e m is an electronic system, which includes a single chip

microcomputers (Microcontrollers) like the PIC.

 It is configured to perform a specific dedicated application.

 Software is programmed into the on chip ROM of the single chip computer.

This software is not accessible to the user and software solves only a limited

range of problems.

 Here the microcomputer is embedded or hidden inside the system. Every

embedded microcomputer system, accepts inputs, performs computations, and

generates outputs and runs in “real time.”

For Example, a typical automobile now a days contains an average of ten

microcontrollers. In fact, modern houses may contain as many as 150

microcontrollers and on average a consumer now interacts with microcontrollers up

to 300 times a day. General areas that employ embedded systems covers every

branch of day to day science and technology, namely Communications,

automotive, military, medical, consumer, machine control etc...

Ex: Cell phone , Digital camera , Microwave Oven,MP3 player, Portable digital

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

assistant & automobile antilock brake system etc.

 Components of embedded system:

An embedded system has three components:

1. Hardware.

2. Application software.

This may perform concurrently the series of tasks or multiple tasks.

3. Real Time Operating system (RTOS) that supervises the application software and

provide mechanism to let the processor run a process as per scheduling by

following a plan to control the latencies. RTOS defines the way the system works.

It sets the rules during the execution of application program. A small scale

embedded system may not have RTOS.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Hardware:

Embedded System hardware

Processor

 A Processor is the heart of the Embedded System.

 The main criteria for the processor are the processing power needed to perform the

tasks within the system.

Processors can be of the following categories:

 General Purpose Processor (GPP)

 Microprocessor

 Microcontroller

 Embedded Processor

 Digital Signal Processor

 Media Processor

 Application Specific System Processor (ASSP)

 Application Specific Instruction Processors (ASIPs)

Power Source

Three possible methods of providing power to an embedded system are

 System own supply with separate supply rails for IOs, clock, basic processor and

memory.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 Supply from a system to which the embedded system interfaces, for example in a

network card.

 Charge pump concept used in a system of little power needs, for examples, in the

mouse or contact-less smart card.

Clocking Circuits

 The clock controls the time for executing an

instruction. The clock controls the various clocking

requirements of CPU, Timer etc

 For this, clocking circuit provide highly stable clock

pulses.

Memory

 An embedded system uses different types of memory modules for a wide range of

tasks such as storage of software code and instructions for hardware.

 There are different varieties of memories in embedded system, each having their

own particular mode of operation.

 An efficient memory increases the performance of embedded systems.

Various forms system memory:

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

a. Functions Assigned to the ROM or EPROM or Flash

1. Storing 'Application' program from where the processor fetches the instruction

codes

2. Storing codes for system booting, initializing, Initial input data and Strings.

3. Storing Codes for RTOS.

4. Storing Pointers (addresses) of various service routines.

b. Functions Assigned to the Internal, External and Buffer RAM

1. Storing the variables during program run,

2. Storing the stacks,

3. Storing input or output buffers for example, for speech or image .

c. Functions Assigned to the EEPROM or Flash

Storing non-volatile results of processing.

d. Functions Assigned to the Caches

1. Storing copies of the instructions, data and branch-transfer instructions in

advance from external memories and

2. Storing temporarily the results in write back caches during fast processing

Timer

 Embedded systems often require mechanisms for counting the occurrence of

events and for performing tasks at regular intervals.

 Embedded processors are often equipped with hardware support for this

functionality.

 Timer is a device, which counts the input at regular interval using clock pulses at

its input.

 The count increment on each pulse and store in a register, called count register

 Timer is used for generating delay and for generating waveforms with specific

delay.

Serial Port

 A serial port is a serial communication interface through which information

transfers in or out one bit at a time.

 Serial data transmission is much more common in new communication protocols

due to a reduction in the I/O pin count, hence a reduction in cost.

 Common serial protocols include UART, SPI, SCI and I2C etc

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 In most of the embedded systems at least two serial ports are provided.

Parallel Port

 A parallel port is a type of interface found on computers or embedded

systems for connecting peripherals.

 The name refers to the way the data is sent; parallel ports send multiple

bits of data at once.

 Parallel ports require multiple data lines in their cables and port connectors,

and tend to be larger than contemporary serial ports.

Interrupt Controller

 An interrupt is a signal to the processor emitted by hardware or software

indicating an event that needs immediate attention.

 Interrupts allow an embedded system to respond to multiple real world

events in rapid time.

 By managing the interaction with external systems through effective use of

interrupts can dramatically improve system efficiency and the use of

processing resources.

 In an embedded system there are usually multiple interrupt sources. These

interrupt sources share a single pin. The sharing is controlled by a piece of

hardware called an interrupt controller that allows individual interrupts to

be either enabled or disabled.

System Application Specific Circuit

 These are the dedicated circuits for the implementation of the application of

particular system.

 This may varies from one system to other.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

PIC Microcontrollers

Introduction to PIC Microcontrollers:

PIC stands for Peripheral Interface Controller given by Microchip Technology to identify its

single-chip microcontrollers. These devices have been very successful in 8-bit

microcontrollers. The main reason is that Microchip Technology has continuously upgraded

the device architecture and added needed peripherals to the microcontroller to suit customers'

requirements.The architectures of various PIC microcontrollers can be divided as follows.

Low - end PIC Architectures:

Microchip PIC microcontrollers are available in various types. When PIC microcontroller

MCU was first available from General Instruments in early 1980's, the microcontroller

consisted of a simple processor executing 12-bit wide instructions with basic I/O functions.

These devices are known as low-end architectures. They have limited program memory and

are meant for applications requiring simple interface functions and small program & data

memories. Some of the low-end device numbers are

12C5XX

16C5X

16C505

Mid range PIC Architectures

Mid range PIC architectures are built by upgrading low-end architectures with more

number of peripherals, more number of registers and more data/program memory. Some of

the mid-range devices are

16C6X

16C7X

16F87X

Program memory type is indicated by an

alphabet. C = EPROM

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

F = Flash

RC = Mask ROM

Popularity of the PIC microcontrollers is due to the following factors.

1. Speed: Harvard Architecture, RISC architecture, 1 instruction cycle = 4 clock cycles.

2. Instruction set simplicity: The instruction set consists of just 35 instructions (as opposed

to 111 instructions for 8051).

3. Power-on-reset and brown-out reset. Brown-out-reset means when the power supply goes

below a specified voltage (say 4V), it causes PIC to reset; hence malfunction is avoided.

A watch dog timer (user programmable) resets the processor if the software/program ever

malfunctions and deviates from its normal operation.

4. PIC microcontroller has four optional clock sources.

o Low power crystal

o Mid range crystal

o High range crystal

o RC oscillator (low cost).

5. Programmable timers and on-chip ADC.
6. Up to 12 independent interrupt sources.

7. Powerful output pin control (25 mA (max.) current sourcing capability per pin.)

8. EPROM/OTP/ROM/Flash memory option.

9. I/O port expansion capability.

10. Free assembler and simulator support from Microchip at www.microchip.com

CPU Architecture: The CPU uses Harvard architecture with separate Program and Variable

(data) memory interface. This facilitates instruction fetch and the operation on data/accessing

of variables simultaneously.

Fig : CPU Architecture of PIC microcontroller

http://www.microchip.com/

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

PIC Memory Organisation:

PIC microcontroller has 13 bits of program memory address. Hence it can address up to 8k

of program memory. The program counter is 13-bit. PIC 16C6X or 16C7X program memory

is 2k or 4k. While addressing 2k of program memory, only 11- bits are required. Hence two

most significant bits of the program counter are ignored. Similarly, while addressing 4k of

memory, 12 bits are required. Hence the MSb of the program counter is ignored.

Fig : Program Memory map

The program memory map of PIC16C74A is shown in Fig 16.2.

On reset, the program counter is cleared and the program starts at 00H. Here a 'goto'

instruction is required that takes the processor to the mainline program.

When a peripheral interrupt, that is enabled, is received, the processor goes to 004H. A

suitable branching to the interrupt service routine (ISR) is written at 004H.

Data memory (Register Files): Data Memory is also known as Register File. Register File

consists of two components.

1. General purpose register file (same as RAM).

2. Special purpose register file (similar to SFR in 8051).

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : Data Memory map

The special purpose register file consists of input/output ports and control registers.

Addressing from 00H to FFH requires 8 bits of address. However, the instructions that use

direct addressing modes in PIC to address these register files use 7 bits of instruction only.

Therefore the register bank select (RP0) bit in the STATUS register is used to select one of

the register banks.

In indirect addressing FSR register is used as a pointer to anywhere from 00H to FFH in the

data memory.

Basic Architecture of PIC Microcontrollers

Specifications of some popular PIC microcontrollers are as follows:

Device Progra

m

Memor

y

(14bits)

Data RAM

(bytes)

I/O

Pin

s

ADC Timers

8/16 bits

CCP

(PWM)

USART

SPI

/ I2C

16C74A 4K

EPROM

192 33 8 bits x

8 channels

2/1 2 USART

SPI

/ I2C

16F877 8K Flash 368 (RAM)

256 (EEPROM)

33 10 bits x

8 channels

2/1 2 USART

SPI

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

/ I2C

Device Interrupt

Sources

Instruction

Set

16C74A 12 35

16F877 15 35

PIC Microcontroller Clock

Most of the PIC microcontrollers can operate upto 20MHz. One instructions cycle (machine

cycle) consists of four clock cycles.

Fig : Relation between instruction cycles and clock cycles for PIC microcontrollers

Instructions that do not require modification of program counter content get executed in one

instruction cycle.

Although the architectures of various midrange 8 - bit PIC microcontroller are not the same,

the variation is mostly interns of addition of memory and peripherals. We will discuss here

the architecture of a standard mid-range PIC microcontroller, 16C74A. Unless mentioned

otherwise, the information given here is for a PIC 16C74A microcontroller Chip.

Architecture of PIC16C74A

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : Basic Architecture of PIC 16C74A

The basic architecture of PIC16C74A is shown in fig 17.2. The architecture consists of

Program memory, file registers and RAM, ALU and CPU registers. It should be noted that

the program Counter is 13 - bit and the program memory is organised as 14 - bit word. Hence

the program Memory capacity is 8k x 14 bit. Each instruction of PIC 16C74A is 14 - bit

long. The various CPU registers are discussed here.

CPU registers (registers commonly used by the CPU)

W, the working register, is used by many instructions as the source of an operand. This is

similar to accumulator in 8051. It may also serve as the destination for the result of the

instruction execution. It is an 8 - bit register.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : W register

STATUS Register

The STATUS register is a 8-bit register that stores the status of the processor. This also

stores carry, zero and digit carry bits.

STATUS - address 03H, 83H

Fig : STATUS register

C = Carry bit

DC = Digit carry (same as auxiliary

carry) Z = Zero bit

NOT_TO and NOT_PD - Used in conjunction with PIC's sleep mode

RP0- Register bank select bit used in conjunction with direct addressing mode.

FSR Register (File Selection Register, address = 04H, 84H)

FSR is an 8-bit register used as data memory address pointer. This is used in indirect

addressing mode.

INDF Register (INDirect through FSR, address = 00H, 80H)

INDF is not a physical register. Accessing INDF access is the location pointed to by

FSR in indirect addressing mode.

PCL Register (Program Counter Low Byte, address = 02H, 82H)

PCL is actually the lower 8-bits of the 13-bit program counter. This is a both readable

and writable register.

PCLATH Register (Program Counter Latch, address = 0AH, 8AH)

PCLATH is a 8-bit register which can be used to decide the upper 5bits of the program

counter. PCLATH is not the upper 5bits of the program counter. PCLATH can be read from

or written to without affecting the program counter. The upper 3bits of PCLATH remain zero

and they serve no purpose. When PCL is written to, the lower 5bits of PCLATH are

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

automatically loaded to the upper 5bits of the program counter, as shown in the figure.

Fig : Schematic of how PCL is loaded from PCLATH

Program Counter Stack

An independent 8-level stack is used for the program counter. As the program counter is

13bit, the stack is organized as 8x13bit registers. When an interrupt occurs, the program

counter is pushed onto the stack. When the interrupt is being serviced, other interrupts

remain disabled. Hence, other 7 registers of the stack can be used for subroutine calls within

an interrupt service routine or within the mainline program.

Register File Map

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : Register File Map

It can be noted that some of the special purpose registers are available both in Bank-0 and Bank-

1. These registers have the same value in both banks. Changing the register content in one bank

automatically changes its content in the other bank.

Port Structure and Pin Configuration of PIC 16C74A

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

As mentioned earlier, there is a large variety of PIC microcontrollers. However, the midrange

architectures are widely used. Our discussion will mainly confine to PIC16C74A whose

architecture has most of the required features of a mid-range PIC microcontroller. Study of

any other mid-range PIC microcontroller will not cause much variation from the basic

architecture of PIC 16C74A ..

PIC 16C74A has 5 I/O Ports. Each port is a bidirectional I/O port. In addition, they have the

following alternate functions.

In addition to I/O pins, there is a Master clear pin (MCLR) which is equivalent to reset in

8051. However, unlike 8051, MCLR should be pulled low to reset the micro controller. Since

PIC16C74Ahas inherent power-on reset, no special connection is required with MCLR pin to

reset the micro controller on power-on.

There are two VDD pins and two VSS pins. There are two pins (OSC1 and OSC2) for

connecting the crystal oscillator/ RC oscillator. Hence the total number of pins with a

16C74A is 33+7=40. This IC is commonly available in a dual-in-pin (DIP) package.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : Pin configuration of PIC 16C74A

Instruction Set of PIC Microcontroller

Guidelines from Microchip Technology

For writing assembly language program Microchip Technology has suggested the following guidelines.

1. Write instruction mnemonics in lower case. (e.g., movwf)

2. Write the special register names, RAM variable names and bit names in upper case. (e.g., PCL,
RP0, etc.)

3. Write instructions and subroutine labels in mixed case. (e.g., Mainline, LoopTime)

Instruction Set:

The instruction set for PIC16C74A consists of only 35 instructions. Some of these instructions are byte

oriented instructions and some are bit oriented instructions.

The byte oriented instructions that require two parameters (For example, movf f, F(W)) expect the f to

be replaced by the name of a special purpose register (e.g., PORTA) or the name of a RAM variable

(e.g., NUM1), which serves as the source of the operand. 'f' stands for file register. The F(W) parameter

is the destination of the result of the operation. It should be replaced by:

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

F, if the destination is to be the source register.

W, if the destination is to be the working register (i.e., Accumulator or W register).

The bit oriented instructions also expect parameters (e.g., btfsc f, b). Here 'f' is to be replaced by the

name of a special purpose register or the name of a RAM variable. The 'b' parameter is to be replaced by a

bit number ranging from 0 to 7.

For example:

Z equ 2

btfsc STATUS, Z

Z has been equated to 2. Here, the instruction will test the Z bit of the STATUS register and will skip

the next instruction if Z bit is clear.

The literal instructions require an operand having a known value (e.g., 0AH) or a label that represents a

known value.

For example:

NUM equ 0AH ; Assigns 0AH to the label NUM (a constant

) movlw NUM ; will move 0AH to the W register.

Every instruction fits in a single 14-bit word. In addition, every instruction also executes in a single

cycle, unless it changes the content of the Program Counter. These features are due to the fact that PIC

micro controller has been designed on the principles of RISC (Reduced Instruction Set Computer)

architecture.

Instruction set:

Mnemonics Description
Instruction

Cycles

bcf f, b Clear bit b of register f 1

bsf f, b Set bit b of register f 1

Clrw Clear working register W 1

clrf f Clear f 1

movlw k Move literal 'k' to W 1

movwf f Move W to f 1

movf f, F(W) Move f to F or W 1

swapf f, F(W) Swap nibbles of f, putting result in F or W 1

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

andlw k And literal value into W 1

andwf f, F(W) And W with F and put the result in W or F 1

andwf f, F(W) And W with F and put the result in W or F 1

iorlw k inclusive-OR literal value into W 1

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

iorwf f, F(W) inclusive-OR W with f and put the result in F or W 1

xorlw k Exclusive-OR literal value into W 1

xorwf f, F(W) Exclusive-OR W with f and put the result in F or W 1

addlw k Add the literal value to W and store the result in W 1

addwf f, F(W) Add W to f and store the result in F or W 1

sublw k Subtract the literal value from W and store the result in W 1

subwf f, F(W) Subtract f from W and store the result in F or W 1

rlf f, F(W) Copy f into F or W; rotate F or W left through the carry bit 1

rrf f, F(W) Copy f into F or W; rotate F or W right through the carry bit 1

btfsc f, b
Test 'b' bit of the register f and skip the next instruction if bit

is clear
1 / 2

btfss f, b
Test 'b' bit of the register f and skip the next instruction if bit

is set
1 / 2

decfsz f, F(W)
Decrement f and copy the result to F or W; skip the next

instruction if the result is zero
1 / 2

incfcz f, F(W)
Increment f and copy the result to F or W; skip the next

instruction if the result is zero
1 / 2

goto label Go to the instruction with the label "label" 2

call label
Go to the subroutine "label", push the Program Counter in

the stack
2

Retrun
Return from the subroutine, POP the Program Counter from

the stack
2

retlw k
Retrun from the subroutine, POP the Program Counter from

the stack; put k in W
2

Retie
Return from Interrupt Service Routine and re-enable

interrupt
2

Clrwdt Clear Watch Dog Timer 1

Sleep Go into sleep/ stand by mode 1

Nop No operation 1

Encoding of instruction:

As has been discussed, each instruction is of 14-bit long. These 14-bits contain both op-code and the

operand. Some examples of instruction encoding are shown here.

Example-1:

bcf f, b Clear 'b' bit of register 'f'

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Operands: 0 ≤ f ≤ 127

0 ≤ b ≤ 7

Encoding:

The instruction is executed in one instruction cycle, i.e., 4 clock cycles. The activities in various

clock cycles are as follows.

Example-2:

goto K Go to label 'k' instruction

Operand: 0 ≤ K ≤ 2047 (11-bit address is specified) Operation: K PC

<10:0> PCLATH <4:3> PC <12:11> Encoding:

Since this instruction requires modification of program Counter, it takes two instruction cycles for

execution.

Q-Cycle activities are shown as follows.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Addressing Modes of pic microcontroller

To know the working principal and data handling, we need to have clear knowledge on addressing modes of

pic microcontroller. Now we can see that how we can categorise different addressing modes of pic

microcontroller. In PIC micro controller, it having mainly five addressing modes. Those are

1. Immediate addressing mode

2. Register operand addressing mode

3. Memory operand addressing mode

4. Direct addressing

5. Indirect addressing.

1. Immediate addressing mode:

In this addressing mode, the operand is a number or constant not an address as MOVLW 43h, the operand here

is data not address. So in this addressing mode of pic microcontroller data is directly transfer. And data is

immediate after the opcode. That is why this type of addressing is called immediate addressing. This way is

fast in execution.

2. Register operand addressing mode:

In this addressing mode, the operand is a Register which holds the data to be execute. Register operand

addressing mode deals with the registers like: CLR W

3. Memory operand addressing mode :

In this addressing mode, the operand is an address of Memory location which holds the data to be execute.

Again memory operand addressing mode is under two category

A). Direct addressing like CLRF 13h. We deal with the address or the memory location.

B). Indirect addressing. we use in it INDF and FSR registers.

4. Direct addressing:

Direct Addressing is done through a 9-bit address. This address is obtained by connecting 7th bit of direct

address. By using an instruction with two bits (RP1, RP0) from STATUS register. this is shown on bellow

Figure . Any access to SFR registers can be an example of direct addressing

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

5.Indirect addressing:

It does not take an address from an instruction. But it derives from IRP bit of STATUS and FSR registers.

Addressed location is accessed through INDF register. And INDF register in fact holds the address indicated

by the FSR. Indirect addressing is very convenient for manipulating data arrays located in GPR registers. In

this case, it is necessary to initialise FSR register with a starting address of the array, and the rest of the data

can be accessed by increment the FSR register. Figure shows the indirect addressing concept.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Timer 2 Overview

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : Schematic diagram showing operation of Timer 2

Timer 2 is an 8 - bit timer with a pre-scaler and a post-scaler. It can be used as the PWM time base for

PWM mode of capture compare PWM (CCP) modules. The TMR2 register is readable and writable and is

cleared on device reset.

The input clock () has a pre-scaler option of 1:1, 1:4 or 1:16 which is selected by bit 0 and bit 1 of

T2CON register respectively.

The Timer 2 module has an 8bit period register (PR2). Timer-2 increments from 00H until it is equal to

PR2 and then resets to 00H on the next clock cycle. PR2 is a readable and writable register. PR2 is

initailised to FFH on reset.

The output of TMR2 goes through a 4bit post-scaler (1:1, 1:2, to 1:16) to generate a TMR2 interrupt by

setting TMR2IF.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : The T2CON Register

Interrupt Logic in PIC 16C74A

PIC 16C74A microcontroller has one vectored interrupt location (i.e., 0004H) but has 12 interrupt

sources. There is no interrupt priority. Only one interrupt is served at a time. However interrupts can be

masked. The interrupt logic is shown below :

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B

Course: B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Fig : Schematic diagram showing the interrupt logic for PIC

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B

Course: B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

output
TMR2

(1)

Sets flag bit

TMR2IF

FOSC/4

Reset

2

EQ

T2CKPS1:T2CKPS0

4

TOUTPS3:TOUTPS0

Note: TMR2 register output can be software selected by the SSP Module as a baud clock.

Comparator
Postscaler 1:1

to 1:16

PR2 reg

TIMER 2 SCALAR INITALISATION:

Timer2 is an 8-bit timer with a prescaler, a postscaler, and a period register. Using

the prescaler and postscaler at their maximum settings, the overflow time is the same

as a 16-bit timer. Timer2 is the PWM time-base when the CCP module(s) is used in

the PWM mode.

Figure shows a block diagram of Timer2. The postscaler counts the number of times

that the TMR2 register matched the PR2 register. This can be useful in reducing the

overhead of the interrupt service routine on the CPU performance.

Figure : Timer2 Block Diagram

 Prescaler

1:1, 1:4, 1:16

TMR2 reg

Control Register:

Register shows the Timer2 control register.

Register : T2CON: Timer2 Control Register

— TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0

 b-7 b-0

bit 7 Unimplemented: Read as '0'

bit 6:3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits
 0000 = 1:1 Postscale

 0001 = 1:2 Postscale

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B

Course: B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 •

 •

 •

 1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 On bit
 1 = Timer2 is on

 0 = Timer2 is off

bit 1:0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

 00 = Prescaler is 1
 01 = Prescaler is 4
 1x = Prescaler is 16

 Timer Clock Source

The Timer2 module has one source of input clock, the device clock (FOSC/4). A

prescale option of 1:1, 1:4 or 1:16 is software selected by control bits

T2CKPS1:T2CKPS0 (T2CON<1:0>).

 Timer (TMR2) and Period (PR2) Registers

The TMR2 register is readable and writable, and is cleared on all device resets.

Timer2 incre- ments from 00h until it matches PR2 and then resets to 00h on the

next increment cycle. PR2 is a readable and writable register.

TMR2 is cleared when a WDT, POR, MCLR, or a BOR reset occurs, while the PR2 register is set.

Timer2 can be shut off (disabled from incrementing) by clearing the TMR2ON

control bit (T2CON<2>). This minimizes the power consumption of the module.

 TMR2 Match Output

The match output of TMR2 goes to two sources:

1. Timer2 Postscaler

2. SSP Clock Input

There are four bits which select the postscaler. This allows the postscaler a 1:1 to

1:16 scaling (inclusive). After the postscaler overflows, the TMR2 interrupt flag bit

(TMR2IF) is set to indicate the Timer2 overflow. This is useful in reducing the

software overhead of the Timer2 interrupt ser- vice routine, since it will only

execute once every postscaler # of matches.

The match output of TMR2 is also routed to the Synchronous Serial Port module,

which may soft- ware select this as the clock source for the shift clock.

 Clearing the Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

• a write to the TMR2 register

• a write to the T2CON register

Note: When T2CON is written TMR2 does not clear.

• any device reset (Power-on Reset, MCLR reset, Watchdog Timer Reset,

Brown-out Reset, or Parity Error Reset)

 Sleep Operation

T
im

e
r
2

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

W = Writable bit

Legend

R = Readable bit

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B

Course: B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

During sleep, TMR2 will not increment. The prescaler will retain the last prescale

count, ready for operation to resume after the device wakes from sleep.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Table : Registers Associated with Timer2

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Value on:

POR,

BOR, PER

Value on

all other

resets

INTCON GIE PEIE T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u

PIR TMR2IF (1)
 0 0

PIE TMR2IE (1)
 0 0

TMR2 Timer2 module’s register 0000 0000 0000 0000

T2CON — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000

PR2 Timer2 Period Register 1111 1111 1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as ‘0'.
Shaded cells are not used by the Timer2 module.

Note 1: The position of this bit is device dependent.

INITIALISATION

Example shows how to initialize the Timer2 module, including specifying the Timer2 pres-

caler and postscaler.

CLRF T2CON ; Stop Timer2, Prescaler = 1:1,

 ; Postscaler = 1:1

CLRF TMR2 ; Clear Timer2 register

CLRF INTCON ; Disable interrupts

BSF STATUS, RP0 ; Bank1

CLRF PIE1 ; Disable peripheral interrupts

BCF STATUS, RP0 ; Bank0

CLRF PIR1 ; Clear peripheral interrupts Flags

MOVL
W

0x72 ; Postscaler = 1:15, Prescaler = 1:16

MOVW
F

T2CON ; Timer2 is off

BSF T2CON, TMR2ON ; Timer2 starts to increment

;

; The Timer2 interrupt is disabled, do polling on the overflow bit

;

T2_OVFL_WAIT

BTFSS PIR1, TMR2IF ; Has TMR2 interrupt occurred? GOTO

 T2_OVFL_WAIT ; NO, continue loop

;

; Timer has overflowed

;

BCF PIR1, TMR2IF ; YES, clear flag and continue.

INTSERVICE INTERRUPT SERVICE ROUTINE:

 Whenever an interrupt occur, the CPU automatically pushes the return address in the PC onto the

stack and clear the GIE (global interrupt enable) bit, disabling further interrupts. No other registers,

or W, are automatically set aside.

 The first job of Intservice is to set aside the content of W and of STATUS. Then they can be restored

at the end of the ISR to exactly the same state they were in when the interrupt occurred, as required

for the proper execution of the machine code.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Once interrupt have been enabled , Bank 1 register and RAM should only be accessed by indirect

addressing

IntService

; set asude W and STATUS

 movwf W_TEMP ;copy W to RAM

 swapf STATUS,W ;move STATUS to W without affecting Z bit

 movwf STATUS_TEMP ;copy to RAM

; execute polling routine

 btfsc P1R1,TMR21F ;check for timer2 interrupt

 call TIMER2 ; if ready, service it

; btfsc …… ; check another interrupt source

; call ……. ; if ready, service it

; btfsc ……. ; check another interrupt source

; call ……. ; if ready, service it

; restore STATUS and W and retirn from interrupt

 swapf STATUS_TEMP,W ; Restore STATUS bits

 movwf STATUS ;without affecting z bit

 swapf W_TEMP,F ; swap W_TEMP

 swapf W_TEMP,W ;swap again into W without affect Z bit

;;;;;;;;;;;;;;;;;;TIMER2 SUBROUTINE;;

Timer2

 bcf PIR1,TMR2IF ; Clear interrupt flag (bank 0)

 decf SCALEWR,F

 return

The central code of IntService is a sequence of btfsc, call instruction pairs. If tested flag is set, ISR is

called otherwise call is skipped. This sequence is called polling subroutine.

LOOPTIME SUBROUTINE:

 LoopTime subroutine that is called within mainline loop is able to make the time around the

loop take exactly 10 ms. For the loop time work correctly, the worst-case (i.e. longest) execution

of the remainder of the code in the main loop plus the worst-case execution time for all the ISR

that could request service within a 10-ms interval must be less than 10-ms.

 The mainline overrun condition is easily avoided for many, if not most, applications. If it is not

avoided during one loop, the next looptime will be shortened to compensate.

 On the other hand, even if this mainline overrun condition does not occur, the long range timing

provided by the loop time subroutine will still be accurate as long as no counts of SCALAR are

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

ever lost.

;;;;;;;;;;;;;;;;::::::::::::::::::::::::::::::;LoopTime subroutine:::;

LoopTime

 btfss SCALER, 7

 goto LoopTime

 movlw 5

 addwf SCALAR, F

 return

IntService, which in turn wait on successive interrupt from timer2. When the timer2 interrupt occurs that

finally decrements SCALER down from H’00’ to H’FF’, the goto Loop Time instruction will be skipped,

five will be added to SCALER (resulting in SCALER =4), and the CPU will return from the ISR.

UART:

An universal asynchronous receiver and transmitter (UART) is an integrated circuit which is

programmed to control a computer's interface to its attached serial devices [3]. Specifically, it provides

the system with the RS-232C Data Terminal Equipment (DTE) interface, enabling it to talk to and

exchange data with modems and some other serial devices. Being a part of this interface, the UART also

provides the basic operations as:
 Converts the bytes it gets from the computer along parallel circuits to a single serial bit stream for

outbound transmission.

 For inbound transmission, converts the serial bit stream to the bytes that the system handles.

 Adds a parity bit after selection in outbound transmissions, checks the parity of incoming bytes (if
selected) and rejects the parity bit.

 Adds start and stop delineators for outbound and helps to strip them from inbound transmissions.

 Handles interrupts from keyboard and mouse (which are serial devices with special ports).

 Fig. . Serial data transmission.

I. UART DESIGN:

The UART block diagram consists of three main components, Transmitter control, Receiver

control and Baud rate generator. When transmitting , the UART takes eight bits of parallel data,

converts the data to a serial bit stream that has a start bit (logic ‘0’), 8 data bits, and a stop bit (logic

‘1’). When receiving, the UART initially detects a start bit, then receives a stream of 8 data bits and

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

translates the data into parallel when it detects the stop bit. As no clock is transmitted, the UART

must synchronize incoming stream of bits with the local clock.

The following six 8bit registers are used.

 1- RSR- Receive shift register.

 2- RDR- Receive data register.

 3- TDR- Transmit data register.

 4- TSR- Transmit shift register.

 5-SCCR- Serial communications control register.

 6-SCSR- Serial communications status registers.

Assume that the UART is connected to a microcontroller data and address bus so that the CPU

can read and write to the registers. RDR, TDR, SCCR and SCSR are memory mapped. RDR, SCSR,

SCCR can drive the data bus through tristate buffers.TDR and SCCR can be loaded from the data

bus.

Besides the registers, the three main components of the UART are the Baud rate generator, the

receiver and transmitter control. The Baud rate generator divides the clock of the system down to

provide the bit clock (bclk) with a period equal to one bit time and also bclkx8, which has a frequency

eight times the bclk frequency. The TDRE (transmit data register empty) bit in the SCSR is set when

TDR is empty.

A. Baudrate Generator

The 8 MHz clock system clock is first divided by 13 using a counter. This counter output goes to 8 bit

binary counter. The output from the flip-flops in this counter relates to divide by 2, 4 and so on upto

divide by 256. Out of these outputs, one is selected by a multiplexer. The multiplexer selects inputs that

come from the lower 3bits of the sccr. The output corresponds to bclkx8, which is again divided by 8

to give bclk.

 Fig. UART design model block diagram

Initially the process increments the divide by 13 counters on the rising edge of the system clock.

The second process increments the divide by 256 counters on the rising edge of clkdiv13. A

concurrent statement generates the mux output, bclkx8.The third process increments the divide by 8

counters on the rising edge of bclkx8 to generate bclk.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 Fig. Baud rate generator block diagram.

B. UART Transmitter

When the microcontroller is ready to transmit data, the following occurs.
1. The microcontroller waits until TDRE=’1’ [5] and then loads a byte of data into TDR clears TDRE.

2. UART transfers data from TDR to TSR and sets TDRE.

3. The UART provides an output as a start bit ‘0’ for one bit time and then shifts TSR right to transmit the eight data bits

followed by the stop bit ‘1’.

4. In this step the UART transfers data from TDR to TSR and sets TDRE.

5. The UART gives a output as a start bit ‘0’ for one bit time and shifts TSR right to transmit the eight data bits followed

by the stop bit ‘1’.

SM chart of transmitter

In the IDLE state, the SM waits until TDR is loaded and consequently TDRE is cleared. In

SYNCH state, the SM waits for the rising edge of the bit clock and then clears the low order bit

of the TSR to transmit a ‘0’ for one bit time. In the TDATA state, each time bclk↑ is detected,

TSR is shifted right to transmit the next data bit and the bit counter (bct) is incremented. When

bct=9 eight data bits and a stop bit have been transmitted, bct is then cleared and the SM goes

back to idle.

The transmitter contains the TDR and TSR registers and the transmit control. It interfaces

with TDRE and data bus (DBUS).The first process represents the combinational network, which

generates the next state and control signals. The second process updates the registers on the rising

edge of the clock. The signal bclk_rising is ‘1’ for one system clock time following the rising

edge of bclk. To generate bclk_rising, bclk is stored in a flip-flop named bclk_dlayed. Then

bclk_rising is ‘1’ if the current value of bclk is ‘1’ and the previous value is ‘0’.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 Fig. SM chart of transmitter

C. UART Receiver

1. When UART detects a start bit, it reads the left over bits serially and shifts them into RSR.

2. When all the data bits and the stop bit are received, the RSR loads into RDR and the flag of

Receive Data Register Full (RDRF) in the SCSR is set.

3. The microcontroller checks for the RDRF flag, and if it is set, the flag is cleared by reading

RDR.

RxD is sampled eight times during each bit time. It is sampled on the rising edge of the BClkX8. The bit

is read in middle of each bit time for maximum reliability. When RxD first goes low, we will wait for four

BClkX8 periods, which should take us closer to the middle of the first data bit. Then reading once per

eight BClkX8 clocks is continued until we have read the stop bit.

 Fig. Sampling RxD with Bclkx8

SM chart of receiver

Two counters are used ct1 counts the number of BClkX8 clocks. ct2 counts the number of bits

received after the start bit is encountered. In the IDLE state, the SM waits for the start bit (RxD = ‘0’)

and then goes to start detected state. Now the SM waits for the rising edge of BClkX8 and samples

RxD once more. Since the start bit should be ‘0’ for eight BClkX8 clocks, a ‘0’ should be read. As ct1

is still 0, it is incremented and SM waits for the rising edge of BClkX8.If RxD = ‘1’, this is an error

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

condition and SM clears ct1 and resets to the IDLE state. Otherwise SM keeps looping till RxD is ‘0’.

When RxD is ‘0’ for the fourth time, ct1 = 3, so ct1 is cleared the state goes to receive data. In this

state, the SM increments ct1 after every rising edge of BClkX8.After the eighth clock, ct1 = 7 and ct2

is checked. If it is not 8, the current value of RxD is shifted to RSR, ct2 is incremented, and ct1 is

cleared. If ct2 = 8, all the 8 bits have been read and we should be at the middle of the stop bit. If

RDRF = 1,the microcontroller has not yet read the previously received data byte, and an overrun error

has occurred, where the OE flag in the status register is set and the new data is ignored. If RxD = ‘0’,

the stop bit has not been detected properly, and the framing error (FE) flag in the status register is set.

If no errors have occurred, RDR is loaded from RSR. In all cases, RDRF is set to indicate that receive

operation is completed and counter is cleared.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

UNIT-3

8051 Microcontroller Assembly Language Programming

What is a Programming Language?

Programming in the sense of Microcontrollers (or any computer) means writing a sequence of

instructions that are executed by the processor in a particular order to perform a predefined task.

Programming also involves debugging and troubleshooting of instructions and instruction sequence to

make sure that the desired task is performed.

Like any language, Programming Languages have certain words, grammar and rules. There are

three types or levels of Programming Languages for 8051 Microcontroller. These levels are based on

how closely the statements in the language resemble the operations or tasks performed by the

Microcontroller.

The three levels of Programming Languages are:

 Machine Language

 Assembly Language

 High-level Language

Machine language

In Machine language or Machine Code, the instructions are written in binary bit patterns i.e.

combination of binary digits 1 and 0, which are stored as HIGH and LOW Voltage Levels. This is the

lowest level of programming languages and is the language that a Microcontroller or Microprocessor

actually understands.

Assembly Language

The next level of Programming Language is the Assembly Language. Since Machine Language or

Code involves all the instructions in 1’s and 0’s, it is very difficult for humans to program using it.

Assembly Language is a pseudo-English representation of the Machine Language. The 8051

Microcontroller Assembly Language is a combination of English like words called Mnemonics and

Hexadecimal codes.

It is also a low level language and requires extensive understanding of the architecture of the

Microcontroller.

High-level Language

The name High-level language means that you need not worry about the architecture or other

internal details of a microcontroller and they use words and statements that are easily understood by

humans.

Few examples of High-level Languages are BASIC, C Pascal, C++ and Java. A program called

Compiler will convert the Programs written in High-level languages to Machine Code.

Why Assembly Language?

Although High-level languages are easy to work with, the following reasons point out the

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

advantage of Assembly Language

 The Programs written in Assembly gets executed faster and they occupy less memory.

 With the help of Assembly Language, you can directly exploit all the features of a

Microcontroller.

 Using Assembly Language, you can have direct and accurate control of all the Microcontroller’s

resources like I/O Ports, RAM, SFRs, etc.

 Compared to High-level Languages, Assembly Language has less rules and restrictions.

Structure of the 8051 Microcontroller Assembly Language

The Structure or Syntax of the 8051 Microcontroller Assembly Language is discussed here. Each line or

statement of the assembly language program of 8051 Microcontroller consists of three fields: Label,

Instruction and Comments.

The arrangement of these fields or the order in which they appear is shown below.

[Label:] Instructions [//Comments]

Before seeing about these three fields, let us first see an example of how a typical statement or line in an

8051 Microcontroller Assembly Language looks like.

 TESTLABEL: MOV A, 24H ; THIS IS A SAMPLE COMMENT

In the above statement, the “TESTLABEL” is the name of the Label, “MOV A, 24H” is the Instruction and

the “THIS IS A SAMPLE COMMENT” is a Comment.

Label

The Label is programmer chosen name for a Memory Location or a statement in a program. The Label part

of the statement is optional and if present, the Label must be terminated with a Colon (:).

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

An important point to remember while selecting a name for the Label is that they should reduce the need for

documentation.

Instruction

The Instruction is the main part of the 8051 Microcontroller Assembly Language Programming as it is

responsible for the task performed by the Microcontroller. Any Instruction in the Assembly Language

consists of two parts: Op-code and Operand(s).

The first part of the Instruction is the Op-code, which is short for Operation Code, specifies the operation to

be performed by the Microcontroller. Op-codes in Assembly Language are called as Mnemonics. Op-codes

are in binary format (used in Machine Language) while the Mnemonic (which are equivalent to Op-codes)

are English like statements.

The second part of the instruction is called the Operand(s) and it represents the Data on which the operation

is performed. There are two types of Operands: the Source Operand and the Destination Operand. The

Source Operand is the Input of the operation and the Destination Operand is where the result is stored.

Comments

The last part of the Structure of 8051 Assembly Language is the Comments. Comments are statements

included by the developer for easier understanding of the code and is used for proper documentation of the

Program.

Comments are optional and if used, they must begin with a semicolon (;) or double slash (//) depending on

the Assembler.

The following statements will show a few possible ways of using Label, Instruction and Comments.

Label without instruction and comment: LABEL:

Line with Label and Instruction: LABEL: MOV A, 22H

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Line with Instruction and Comment: MOV A, 22H ; THIS IS A COMMENT

8051 Microcontroller Assembly Language Directives

Assembly Language Directives are not the instructions to the 8051 Microcontroller Assembler
even though they are written in the Mnemonic field of the program. Assembly Language
Directives are actually instructions to the Assembler and directs the Assembler Program what
to do during the process of Assembling.

The Assembly Language Directives do not have any effect on the contents of the 8051
Microcontroller Memory (except DB and DW directives).

These Directives are dependent on the Assembler Program and in case of ASM51 Assembler,
the following are the categories of Directives.

We will now see about few of the important and frequently used Assembly Language Directives.

ORG – Set Origin

The 8051 Microcontroller Assembly Language Program will start assembling from the Program Memory

Address 0000H. This is also the address from which the 8051 Microcontroller will start executing the code.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

In order place the Program and Data anywhere in the Address Space of the 8051 Microcontroller, you can

use the ORG Directive.

Examples

ORG 0000H ; Tells the Assembler to assemble the next statement at 0000H

LJMP MAIN ; Code Memory at 0000H. Jump to MAIN.

ORG 000BH ; Tells the Assembler to assemble the next statement at 000BH

MAIN: NOP ; Code Memory at 000BH. MAIN starts here.

DB – Define Byte

The DB Directive is used to define a Byte type variable. Using this directive, you can define data in

Decimal, Binary, HEX or ASCII formats. There should be a suffix of ‘B’ for binary and ‘H’ for HEX. The

ASCII Characters are placed in single quotation marks (like ‘string’).

Examples

ORG 0000H

DB 10 ; Define Byte 10 (Decimal) and store at 0000H

DB 30H ; Define Byte 30 (HEX) and store at 0001H

DB ‘STRING’ ; Define String ‘STRING’ and store at 0002H to 0007H

DB 00001111B ; Define Byte 00001111 (Binary) and store at 0008H

DB 1234H ; Define Byte 34 (HEX) and store at 0009H. Only lower byte is

 accepted as DB can allocate only a Byte of Memory.

DW – Define Word

The Define Word (DW) Directive is used to include a 16-bit data in a program. The functionality of DW is

similar to that of DB except that DW generates 16-bit values.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

EQU – Equate

Using the EQU Directive, you can associate a Symbol (or Label) with a Value.

Examples

TMP EQU #30 ; Assigns the value #30 to the name TMP

RED_LED EQU P1.0 ; P1.0 is defined as RED_LED

END

The END Directive is used to stop the assembling process. This should be the last statement in the program.

END Directive cannot have a Label and the statements beyond END will not be processed by the

Assembler.

Example

ORG 0000H

MOV A, 20H

MOV R0, #30

END

Arithmetic Instructions

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and division. The

arithmetic instructions also include increment by one, decrement by one and a special instruction called

Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller Instruction Set are:

 ADD

 ADDC

 SUBB

 INC

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 DEC

 MUL

 DIV

 DA A

The arithmetic instructions has no knowledge about the data format i.e. signed, unsigned, ASCII, BCD, etc.

Also, the operations performed by the arithmetic instructions affect flags like carry, overflow, zero, etc. in

the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the following table.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Stack Memory Allocation in 8051 Microcontroller

The stack is an area of random access memory (RAM) allocated to hold temporarily all the parameters of

the variables. The stack is also responsible for reminding the order in which a function is called so that it can

be returned correctly. Whenever the function is called, the parameters and local variables associated with it

are added to the stack (PUSH). When the function returns, the parameters and the variables are removed

(“POP”) from the stack. This is why a program’s stack size changes continuously while the program is

running.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

The register used to access the stack is called stack pointer register. The stack pointer is a small register used

to point at the stack. When we push something into the stack memory, the stack pointer increases.

When an 8051 microcontroller power up, the stack pointer contained value is 07, by default, as shown in the

above figure. If we perform ‘PUSH’ operation, then the stack pointer address will be increased and shifted

to another register. To avoid this problem, before starting the program, we have to assign a different address

location to the stack pointer.

Bit Addressable RAM: 20h to 2Fh

The 8051 supports a special feature which allows access to bit variables. This is where individual

memory bits in Internal RAM can be set or cleared. In all there are 128 bits numbered 00h to 7Fh. Being

bit variables any one variable can have a value 0 or 1. A bit variable can be set with a command such as

SETB and cleared with a command such as CLR. Example instructions are: SETB 25h ; sets the bit 25h

(becomes 1) CLR 25h ; clears bit 25h (becomes 0) Note, bit 25h is actually bit b5 of Internal RAM

location 24h. The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between

20h and 2Fh. So if a program writes a byte to location 20h, for example, it writes 8 bit variables, bits
00h to 07h at once. Note bit addressing can also be performed on some of the SFR registers.

 Subroutine or subroutine

A subroutine or subroutine in a section separate program or part of the main program that can be called to

perform a specific function. The subroutine may be required by the main program or another subroutine as

many times as necessary. When you call a subroutine implementing the current program is stopped, the

program counter PC (program counter) is loaded with the memory location of the subroutine, running up to

the RET instruction (end of subroutine), where produce a return to the main program resumes running. The

high level languages such as C, Basic subroutines are known under the name functions or procedures.

In the subroutines have to take into account the following considerations:

 Perform specific functions and are not operating on their own.

 Are always linked to a major program or other subroutines.

 Can be called many times as necessary as it reduces the code the program to have the effect of code reuse.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

 Allow the division of program blocks as perform the function of structure. Providing greater visibility and

understanding of it.

As good advice, it is recommended whenever possible division of subroutines or sub-program and minimize

the content of the sentences in the main program. Above all, the subroutines are necessary when part of a

program be executed multiple times. We will make the program easier and it takes up less space in the

ROM.

If a subroutine is made up of few instructions, it may be advisable not to create it, since the call and return

mechanism may make it slower execution instructions to place directly in the main program.

Subroutine or subroutine in sensamblador

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

UNIT-4

INTERFACING OF LCD TO 8051
Display units are the most important output devices in embedded projects and electronics products. 16x2

LCD is one of the most used display unit. 16x2 LCD means that there are two rows in which 16 characters

can be displayed per line, and each character takes 5X7 matrix space on LCD. In this tutorial we are going

to connect 16X2 LCD module to the 8051 microcontroller (AT89S52). Interfacing LCD with 8051

microcontroller might look quite complex to newbies, but after understanding the concept it would look

very simple and easy. Although it may be time taking because you need to understand and connect 16 pins

of LCD to the microcontroller. So first let's understand the 16 pins of LCD module.

We can divide it in five categories, Power Pins, contrast pin, Control Pins, Data pins and Backlight pins.

Category
Pin

NO.
Pin Name Function

Power Pins

1 VSS Ground Pin, connected to Ground

2
VDD or

Vcc
Voltage Pin +5V

Contrast Pin 3 V0 or VEE Contrast Setting, connected to Vcc thorough a variable resistor.

Control Pins

4 RS Register Select Pin, RS=0 Command mode, RS=1 Data mode

5 RW Read/ Write pin, RW=0 Write mode, RW=1 Read mode

6 E Enable, a high to low pulse need to enable the LCD

Data Pins 7-14 D0-D7
Data Pins, Stores the Data to be displayed on LCD or the

command instructions

Backlight

Pins

15 LED+ or A To power the Backlight +5V

16 LED- or K Backlight Ground

All the pins are clearly understandable by their name and functions, except the control pins, so they are

explained below:

RS: RS is the register select pin. We need to set it to 1, if we are sending some data to be displayed on LCD.

And we will set it to 0 if we are sending some command instruction like clear the screen (hex code 01).

RW: This is Read/write pin, we will set it to 0, if we are going to write some data on LCD. And set it to 1, if

we are reading from LCD module. Generally this is set to 0, because we do not have need to read data from

LCD. Only one instruction “Get LCD status”, need to be read some times.

E: This pin is used to enable the module when a high to low pulse is given to it. A pulse of 450 ns should be

http://circuitdigest.com/article/16x2-lcd-display-module-pinout-datasheet

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

given. That transition from HIGH to LOW makes the module ENABLE.

There are some preset command instructions in LCD, we have used them in our program below to prepare

the LCD (in lcd_init() function). Some important command instructions are given below:

Hex Code Command to LCD Instruction Register

0F LCD ON, cursor ON

01 Clear display screen

02 Return home

04 Decrement cursor (shift cursor to left)

06 Increment cursor (shift cursor to right)

05 Shift display right

07 Shift display left

0E Display ON, cursor blinking

80 Force cursor to beginning of first line

C0 Force cursor to beginning of second line

38 2 lines and 5×7 matrix

83 Cursor line 1 position 3

3C Activate second line

08 Display OFF, cursor OFF

C1 Jump to second line, position 1

OC Display ON, cursor OFF

C1 Jump to second line, position 1

C2 Jump to second line, position 2

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Circuit Diagram and Explanation

Circuit diagram for LCD interfacing with 8051 microcontroller is shown in the above figure. If you have

basic understanding of 8051 then you must know about EA(PIN 31), XTAL1 & XTAL2, RST pin(PIN 9),

Vcc and Ground Pin of 8051 microcontroller. I have used these Pins in above circuit. If you don’t have any

idea about that then I recommend you to read this Article LED Interfacing with 8051 Microcontroller before

going through LCD interfacing.

So besides these above pins we have connected the data pins (D0-D7) of LCD to the Port 2 (P2_0 – P2_7)

microcontroller. And control pins RS, RW and E to the pin 12,13,14 (pin 2,3,4 of port 3) of microcontroller

respectively.

PIN 2(VDD) and PIN 15(Backlight supply) of LCD are connected to voltage (5v), and PIN 1 (VSS) and PIN

16(Backlight ground) are connected to ground.

Pin 3(V0) is connected to voltage (Vcc) through a variable resistor of 10k to adjust the contrast of LCD.

Middle leg of the variable resistor is connected to PIN 3 and other two legs are connected to voltage supply

and Ground.

http://circuitdigest.com/microcontroller-projects/led-interfacing-with-8051-89s52

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

INTERFACING OF 8051 WITH KEYBOARD
Keypads are widely used input devices being used in various electronics and embedded projects. They are

used to take inputs in the form of numbers and albhabets, and feed the same into system for further

processing. In this tutorial we are going to interface a 4x4 matrix keypad with 8051 microcontroller.

4X4 Matrix Keypad
Before we interface the keypad with microcontroller, first we need to understand how it works. Matrix

keypad consists of set of Push buttons, which are interconnected. Like in our case we are using 4X4 matrix

keypad, in which there are 4 push buttons in each of four rows. And the terminals of the push buttons are

connected according to diagram. In first row, one terminal of all the 4 push buttons are connected together

and another terminal of 4 push buttons are representing each of 4 columns, same goes for each row. So we

are getting 8 terminals to connect with a microcontroller.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Interfacing keypad with 8051 microcontroller (AT89S52)

First we need to interface a LCD module to display the data which will be feed through KEYPAD, so please

go through “LCD Interfacing with 8051 Microcontroller” article before interfacing KEYPAD.

As shown in above circuit diagram, to interface Keypad, we need to connect 8 terminals of the keypad to

any port (8 pins) of the microcontroller. Like we have connected keypad terminals to Port 1 of 8051.

Whenever any button is pressed we need to get the location of the button, means the corresponding ROW an

COLUMN no. Once we get the location of the button, we can print the character accordingly.

Now the question is how to get the location of the pressed button? I am going to explain this in below steps

and also want you to look at the code:

1. First we have made all the Rows to Logic level 0 and all the columns to Logic level 1.

2. Whenever we press a button, column and row corresponding to that button gets shorted and makes the

corresponding column to logic level 0. Because that column becomes connected (shorted) to the row, which

is at Logic level 0. So we get the column no. See main() function.

http://circuitdigest.com/microcontroller-projects/lcd-interfacing-with-8051-microcontroller-89s52

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

3. Now we need to find the Row no., so we have created four functions corresponding to each column. Like

if any button of column one is pressed, we call function row_finder1(), to find the row no.

4. In row_finder1() function, we reversed the logic levels, means now all the Rows are 1 and columns are 0.

Now Row of the pressed button should be 0 because it has become connected (shorted) to the column whose

button is pressed, and all the columns are at 0 logic. So we have scanned all rows for 0.

5. So whenever we find the Row at logic 0, means that is the row of pressed button. So now we have column

no (got in step 2) and row no., and we can print no. of that button using lcd_data function.

Same procedure follows for every button press, and we are using while(1), to continuously check, whether

button is pressed or not.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

INTERFACING WITH STEPPER MOTOR
 A stepper motor is a device that translates electrical pulses into mechanical movement. The stepper motor

rotates in steps in response to the applied signals. It is used in applications such as disk drives, dot matrix

printers, plotters and robotics.It is mainly used for position control. Stepper motors have a permanent

magnet called rotor (also called the shaft) surrounded by a stator . There are also steppers called variable

reluctance stepper motors that do not have a PM rotor. The most common stepper motors have four stator

windings that are paired with a center-tapped. This type of stepper motor is commonly referred to as a. four-

phase or unipolar stepper motor. The center tap allows a change of current direction in each of two coils

when a winding is grounded, thereby resulting in a polarity change of the stator.

Interfacing of ADC 0804 to 8051 Microcontroller :
ADC 0804 is a single channel analog to digital converter i.e., it can take only one analog signal. ADC

0804 has 8 bit resolution. The higher resolution ADC gives smaller step size. Step size is smallest change

that can be measured by an ADC. For an ADC with resolution of 8 bits, the step size is 19.53mV (5V/255).

The time taken by the ADC to convert analog data into digital form depends on the frequency of clock

source. The conversion time of ADC 0804 is around 110us. To use the internal clock a capacitor and

resistor are used as shown in the circuit. The input to the ADC is given from a regulated power supply and a

10K potentiometer

The 8051 Microcontroller is used to provide the control signals to the ADC. CS(chip select) pin of ADC is directly

connected to ground. The pin P1.1, P1.0 and P1.2 are connected to the pin WR, RD and INTR of the ADC

respectively. When the input voltage from the preset is varied the output of ADC varies also varies.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

From the circuit it is clear that the ADC interfaced directly to the microcontroller. The Port1 is used as an

input port which receives the digital data from the ADC.Port pins P2.5 and P2.6 are used for SOC and EOC

operation.When the conversion is over the ADC will send an interrupt signal to the microcontroller through

the pin P2.7 .Now the Microcontroller receives digital data through the Port1.This data after conversion to

decimal data is displayed on the LCD module .

INTERFACING DAC -8051 MICROCONTROLLER

The DAC 0800 is a simple monolithic 8-bit D/A converter. It has fast settling time of 100ns. It can be directly

interfaced to TTL, CMOS, PMOS and others. It operates at 4.5V to +18V supply. The number of data bit inputs

decides the resolution of the DAC since the number of analog output levels is equal to 2″, where n is the number of

data bit inputs. Therefore, an 8-input DAC such as the DAC0808 provides 256 discrete voltage (or current) levels of

output.

 The interfacing circuit is shown below. port 1(8 bits of the microcontroller is connected to the input data

lines of DAC-08.The reference current is determined by the resistor R1 and the reference voltage V ref. The

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

resistor R2 is generally equal to R1 to match the input impedance of reference source. The output (taken

from pin number 4 is observed either on a digital multimeter or on a cathode ray oscilloscope.

 The output current Io is calculated as follows:

 Io = Vref/R1[Ao/2 + A1/4 + A2/8 + … +A7/256]
The output voltage Vo is obtained as follows: Vo =Io * R1

4. MEMORY MAPPED I/O INTERFACING

In memory-mapped I/O, each input or output device is treated as if it is a memory

location. The MEMR and MEMW control signals are used to activate the devices. Each

input or output device is identified by unique 16-bit address, similar to 16-bit address

assigned to

memory location. All memory related instruction like LDA 2000H, LDAX B, MOV A, M

can be used.

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

Since the I/O devices use some of the memory address space of 8085, the maximum

memory capacity is lesser than 64 KB in this method.

Ex: Interface an 8-bit DIP switch with the 8085 using logic gates such that the address

assigned to it is F0F0H.

Since a 16-bit address has to be assigned to a DIP switch, the memory-mapped I/O

technique must be used. Using LDA F0F0H instruction, the data from the 8-bit DIP

switch can be transferred to the accumulator. The steps involved are:

i. The address F0F0H is placed in the address bus A0 – A15.

ii. The MEMR signal is made low for some time.

iii. The data in the data bus is read and stored in the accumulator.

Fig. 22 shows the interfacing diagram.

Fig. 22 Interfacing 8-bit DIP switch with 8085

When 8085 executes the instruction LDA F0F0H, it places the address F0F0H in the

address lines A0 – A15 as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 = F0F0H

The address lines are connected to AND gates. The output of these gates along with

MEMR signal are connected to a NAND gate, so that when the address F0F0H is placed

in the address bus and MEMR = 0 its output becomes 0, thereby enabling the buffer

74LS244. The data from the DIP switch is placed in the 8085 data bus. The 8085 reads

the data from

INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT

E-NOTES , Subject : EMBEDDED SYSTEM &APPLICTION, Subject Code: EE310B Course:

B.TECH, Branch : Electrical Engineering , Sem-6
th

 , Chapter Name: All

(Prepared By: Mr. Ashok Saini , Assistant Professor , ECE)

the data bus and stores it in the accumulator.

DESIGNING USING MICROCONTROLLER
For this whole unit follow this link
http://www.faadooengineers.com/online-study/post/ece/embedded-system/258/designing-music-box-with-

microcontroller
FOR THE TOPIC

Interpreter, compiler, high level language and intel hex format object files follow the link
http://www.faadooengineers.com/online-study/post/eee/embedded-system-design/1068/interpreter-and-compiler

http://www.faadooengineers.com/online-study/post/ece/embedded-system/258/designing-music-box-with-microcontroller
http://www.faadooengineers.com/online-study/post/ece/embedded-system/258/designing-music-box-with-microcontroller
http://www.faadooengineers.com/online-study/post/eee/embedded-system-design/1068/interpreter-and-compiler

	UNIT-1
	1.1 MICROPROCESSORS AND MICROCONTROLLERS
	1.2. HARVARD & VON- NEUMANN CPU ARCHITECTURE
	Introduction to Embedded Systems
	Components of embedded system:
	Hardware:
	Introduction to PIC Microcontrollers:
	Low - end PIC Architectures:
	Mid range PIC Architectures
	PIC Microcontroller Clock
	CPU registers (registers commonly used by the CPU)
	STATUS Register
	Program Counter Stack
	Register File Map
	Port Structure and Pin Configuration of PIC 16C74A
	Instruction Set of PIC Microcontroller

	Addressing Modes of pic microcontroller
	1. Immediate addressing mode:
	2. Register operand addressing mode:
	3. Memory operand addressing mode :
	Figure : Timer2 Block Diagram

	Timer Clock Source
	Timer (TMR2) and Period (PR2) Registers
	TMR2 Match Output
	Clearing the Timer2 Prescaler and Postscaler
	Sleep Operation
	Table : Registers Associated with Timer2
	Structure of the 8051 Microcontroller Assembly Language
	Label
	Instruction
	Comments

	8051 Microcontroller Assembly Language Directives
	ORG – Set Origin
	DB – Define Byte
	DW – Define Word
	EQU – Equate
	END

	Arithmetic Instructions

	Subroutine or subroutine
	Circuit Diagram and Explanation
	Interfacing keypad with 8051 microcontroller (AT89S52)

	4. MEMORY MAPPED I/O INTERFACING

